Doi: https://doi.org/10.58994/adopa.v1i2.11

Prevalencia, coinfecciones y circulación estacional del virus sincitial respiratorio (VSR) en pacientes pediátricos de un centro médico en Santo Domingo, República Dominicana

Prevalence, coinfections, and seasonal circulation of respiratory syncytial virus (RSV) in pediatric patients in a medical center in Santo Domingo,

Dominican Republic

Rafael Mena Canto¹ • Esperanza Mendoza² • Jhasmel Cabrera De La Cruz³
Mirtha Calderón⁴ • Maeva Paulino⁵ • Deyanira Peguero⁶

Cómo citar: Mena R, Mendoza E, Cabrera De La Cruz J, Calderón M, Maeva Paulino MP, Peguero D. Prevalencia, coinfecciones y circulación estacional del virus sincitial respiratorio (VSR) en pacientes pediátricos de un centro médico en Santo Domingo, República Dominicana. ADOPA. 2023;1(2):55-69. Disponible en: https://adopa.pediatriadominicana.org/index.php/adopa/article/view/13

Resumen

Introducción: a pesar de que el virus sincitial respiratorio (VSR) es una de las principales infecciones del tracto respiratorio inferior en pacientes pediátricos, existe información limitada sobre su impacto y prevalencia en la República Dominicana. Por lo que, este estudio tiene como objetivo determinar la prevalencia, las coinfecciones y la circulación estacional

- ¹ Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología, Santo Domingo, República Dominicana. ORCID ID: 0000-0003-4003-999X Email: rafael.mena@cchmc.org
- ² Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología. ORCID ID: 0000-0002-8492-7211
- ³ Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología. ORCID ID: 0000-0001-7390-1027
- ⁴ Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología. ORCID ID: 0000-0002-9173-4506
- ⁵ Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología. ORCID ID: 0000-0003-4070-0290
- ⁶ Unidad de Cuidados Intensivos Neonatal, Centro de Obstetricia y Ginecología. ORCID ID: 0000-0003-3287-5787

del VSR en pacientes tratados en el Departamento de Pediatría del Centro de Obstetricia y Ginecología en Santo Domingo, República Dominicana.

Métodos: se estudiaron 509 pacientes pediátricos entre julio de 2020 a septiembre de 2022. La detección del VSR y sus respectivas coinfecciones se realizaron a través de paneles virales.

Resultados: la prevalencia del VSR en pacientes pediátricos fue de un 23.77 %. Además, hubo una incidencia predominante del 52.9 % en pacientes masculinos y un 28.1 % de coinfecciones presentadas, siendo el rinovirus la afección más común. De los grupos etarios estudiados, tuvieron la mayor prevalencia los menores de 2 años con un 61.2 %. En cuanto a la circulación estacional, se presentó una mayor incidencia entre octubre-diciembre tanto para el año 2020 como el 2021, mientras que en el 2022 la mayor prevalencia registrada fue de julio-septiembre. No se registró diferencia significativa entre las coinfecciones registrada y el sexo de los pacientes.

Conclusión: el VSR es una afección estacional que afecta en mayor medida a pacientes pediátricos menores a 2 años, presentándose tanto en mono como en coinfecciones.

Palabras clave: virus sincitial respiratorio; prevalencia; coinfección; circulación estacional.

Abstract

Introduction: There is a lack of information on the effects of respiratory syncytial virus (RSV) and its prevalence in the Dominican Republic, despite the fact that RSV is one of the most common causes of infections of the lower respiratory tract in pediatric patients. Consequently, the purpose of this study is to determine the prevalence, coinfections, and seasonal circulation of RSV in patients treated at the Department of Pediatrics of Centro Obstetricia y Ginecología in Santo Domingo, Dominican Republic.

Methods: We studied 509 pediatric patients from July 2020 to September 2022. The detection of RSV and its respective coinfections was performed through viral panels.

Results: The prevalence of RSV in pediatric patients was 23.77%, with a higher incidence in male patients (52.89%). In addition, we documented 28.1% coinfections, with rhinovirus being the most prevalent. Among the age groups studied, the highest prevalence (61.2%) was found in children younger than 2 years. Regarding seasonal circulation, the peak incidence in 2020 and 2021 occurred between October and December, whereas the peak incidence in 2022 occurred between July and September. There was no significant difference between recorded coinfections and patient gender.

Conclusion: RSV is a seasonal condition that affects pediatric patients under the age of 2 years to a greater extent, occurring in both mono and coinfections. This condition is more common in patients with a younger age.

Keywords: respiratory syncytial virus; prevalence; co-infection; seasonal circulation.

Introducción

El virus sincitial respiratorio (VSR) es la causa viral más común de infecciones del tracto respiratorio inferior en pacientes pediátricos^{1, 2}. Se estima que la mayoría de los niños sufren de su primera infección durante los primeros dos años de vida y, en dependencia de su severidad, pueden desarrollar asma y sibilancias crónicas a lo largo de su desarrollo^{3, 4}. Solo en 2015, 33.1 millones de episodios en niños menores de 5 años resultaron en aproximadamente 3.2 millones de hospitalizaciones y 59.600 muertes, siendo el 99 % de estas en países en vías de desarrollo⁵.

A pesar de la relevancia del VSR en niños, datos sobre su incidencia en Latinoamérica son escasos. Sin embargo, se deduce que la incidencia del VSR podría aumentar cuando se trata de niños hospitalizados por enfermedades respiratorias⁶. Además, gracias al incremento de paneles respiratorios se ha vuelto predominante la detección de distintas coinfecciones, incluso se estima que la detección del 35-40 % de todas las infecciones de VSR en niños se debe a coinfecciones con otros virus⁷. No obstante, aún no se conoce el rol de las coinfecciones presentadas en la República Dominicana.

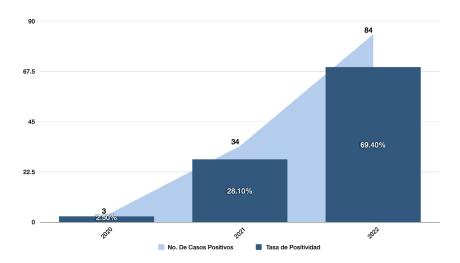
Los brotes del VSR usualmente ocurren de forma estacional en dependencia de las condiciones climáticas de la zona afectada. En los países con un clima templado los brotes por lo general suceden en invierno, mientras que en países tropicales el tiempo y la duración varía en dependencia de la temporada de lluvia⁸. Sin embargo, esto no elimina la posibilidad de que se presenten casos esporádicos durante todo el año.

Se han registrado dos subtipos de VSR: A y B, los cuales se diferencian en alrededor de 25 aminoácidos de los 498 residuos del ectodominio F⁹. Ambos subtipos se transmiten mediante fómites contaminados y/o gotas de secreciones respiratorias y podría resultar en infecciones, bronquiolitis y/o neumonía¹⁰⁻¹².

Actualmente, no existe ninguna vacuna aprobada por la FDA, el único medicamento profiláctico encontrado es palivizumab, un anticuerpo monoclonal humanizado que se administra mensualmente y tiene la capacidad de reducir la hospitalización en un 50 %^{13, 14}. No obstante, su uso se encuentra restringido en los infantes de alto riesgo y no se recomienda para el tratamiento de niños con asma y sibilancias¹⁵, por lo que varias vacunas y medicamentos se encuentran en

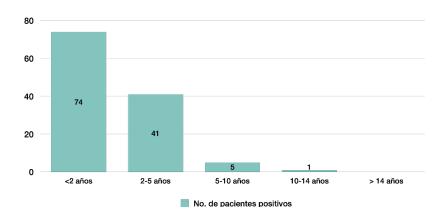
etapas de desarrollo, como la vacuna bivalente RSVpreF, desarrollada por Pfizer, y que ha demostrado entre un 67 % a 86 % de eficacia en adultos¹⁶. También, se han comenzado a suministrar antivirales, siendo uno de ellos el remdesivir, un profármaco del grupo análogo de los nucleótidos que se ha destacado por ser un potente inhibidor del VSR¹⁷.

Por tanto, el presente artículo se presenta con el objetivo de determinar la prevalencia, las coinfecciones y la circulación estacional de virus sincitial respiratorio en el Centro de Obstetricia y Ginecología en Santo Domingo, República Dominicana.


Material y métodos

Se realizó un estudio observacional, descriptivo y de corte transversal con recolección retrospectiva de datos. La investigación se llevó a cabo en el Departamento de Pediatría del Centro de Obstetricia y Ginecología localizado en Santo Domingo, D.N., República Dominicana. Tuvo como población de estudio 509 pacientes pediátricos (0 a 18 años) que realizaron una prueba de detección de afecciones respiratorias a través de paneles virales entre julio de 2020 a septiembre de 2022.

Se realizó una estadística descriptiva y la comparación de variables con U de Mann-Whitney mediante el software SPSS.


Resultados

La prevalencia del virus sincitial respiratorio (VSR) fue del 23.77 % (n =121) con un predominio del 52.9 % (n = 64) en el sexo masculino. De los 121 casos encontrados, el 69.4 % de los casos detectados fue en el 2022, mientras que el 28.1 % en el 2021 y solo un 2.5 % en 2020 (véase Figura 1).

Figura 1. Casos de Virus Sincitial Respiratorio (VSR) según el año **Fuente:** elaboración propia.

En cuanto a los datos obtenidos según los grupos etarios, los pacientes que mayor prevalencia tuvieron del VSR fueron los menores de 2 años con un 61.2 % (n= 74), mientras que los pacientes entre 2-5 años tuvieron una prevalencia del 33.9 % (n = 41), los pacientes entre 5-10 años un 4.1 % (n = 5) y los pacientes de 10-14 años un 0.8 % (n = 1). No hubo casos reportados para los pacientes mayores de 14 años (véase Figura 2).

Figura 2. Casos de infección por Virus Sincitial Respiratorio (VSR) según grupo etario **Fuente**: elaboración propia.

Se obtuvo una prevalencia del 28.1 % (n=34) de coinfecciones. Los virus respiratorios encontrados fueron: adenovirus, coronavirus OC43, influenza B, metaneumovirus, parainfluenza 1, 2, 3 y 4, rinovirus/enterovirus y SARS-CoV-2 (véase Figura 3), siendo el rinovirus/enterovirus la afección respiratoria con mayor prevalencia al presentarse en un 50 % de las coinfecciones como caso único o acompañado por otros virus.

Las coinfecciones detectadas fueron de 1 a 4 virus adicionales al VSR. Se destaca un (1) caso en el 2022 con cuatro (4) detecciones de virus adicionales al VSR, siendo estos: SARS-CoV-2, rinovirus, parainfluenza 2 y coronavirus OC43. También, se distinguen las coinfecciones de SARS-CoV-2, teniendo una prevalencia del 29.41 %.

No hubo coinfecciones reportadas en el 2020, mientras que en el 2021 y el 2022 se reportaron el 23.53 % y el 76.47 % de los casos, respectivamente (véase Figura 3). Se reportó una mayor prevalencia de coinfecciones en los niños menores de 2 años con un 50 %, seguido por los niños de 2-5 años y de 5-10 años con un 44.12 % y 5.88 %, respectivamente. No se reportaron coinfecciones en los demás grupos etarios. Tampoco hubo diferencia significativa entre las coinfecciones reportadas y el sexo de la población estudiada.

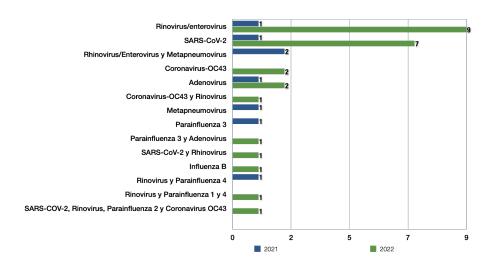
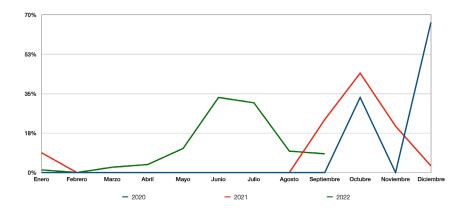



Figura 3. Casos de coinfección con Virus Sincitial Respiratorio (VSR)

Fuente: elaboración propia.

En cuanto a la circulación estacional del VSR, se obtuvo que tanto en el 2020 como el 2021 hubo una mayor prevalencia de casos en la temporada octubre-diciembre, mientras que en el 2022 se reportó un incremento exponencial de julio-septiembre (Véase Figura 4).

Figura 4. Distribución estacional de infección por Virus Sincitial Respiratorio (VSR) **Fuente:** elaboración propia.

Discusión

Prevalencia de VSR en pacientes pediátricos

La prevalencia obtenida (23.77 %) y la incidencia predominante del sexo masculino en los pacientes pediátricos estudiados coinciden con los resultados de una reseña publicada en el 2014, la cual establece que la prevalencia del VSR en Latinoamérica es de un 27.5 % 18, y a reportes que indican que el sexo masculino es el más afectado 19.

En la República Dominicana existe un estudio similar del 2018 que describe las características clínico-epidemiológicas del VSR en niños menores de 2 años ingresados en el Hospital Infantil Dr. Robert Reid Cabral entre enero-diciembre del 2006. El estudio se realizó con una población de 114 pacientes y obtuvo una prevalencia del virus de un 48 % con un 62 % de los casos correspondiente a la población masculina²⁰.

La diferencia de prevalencia encontrada entre esta investigación y el publicado en el 2018 se debe a la población de estudio. La investigación del 2018 se centró en

pacientes que tuvieron un diagnóstico previo de bronquiolitis, afección respiratoria usualmente causada por el VSR²¹, mientras que nuestra población incluyó todos los pacientes que realizaron un panel respiratorio. Además, la población del estudio de la investigación del 2018 constituyó únicamente de pacientes menores de 2 años, grupo etario que ha demostrado tener una de las mayores prevalencias en VSR²². En cambio, nuestro estudio se centró en pacientes pediátricos. Cabe destacar que el grupo etario con mayor prevalencia de casos fueron los menores de 2 años, resultado que coincide con un estudio publicado durante 2019 en Santo Domingo Norte, República Dominicana, en donde este grupo etario fue la población más afectada con un 50 % de incidencia²³.

La baja prevalencia de casos encontrados en el 2020 se encuentra influenciada por el efecto de la pandemia COVID-19, la cual provocó un incremento en prácticas de higiene, distanciamiento social y clausura de eventos masivos. Por ejemplo, niños en Melbourne, Australia, presentaron una reducción entre el 68.8 % y 100 % de los casos de VSR durante la cuarentena²⁴. A medida que se levantaron las restricciones sociales en la población dominicana se observó un incremento de casos en años posteriores.

Coinfecciones

El rol y los mecanismos de las coinfecciones en los pacientes pediátricos se encuentra severamente inexplorado. Aunque existen estudios que avalan el incremento de la severidad, ventilación y mortalidad en pacientes con coinfecciones virales²⁵, este no siempre es el caso, debido a que la fisiopatología de las coinfecciones depende en gran medida de la interferencia viral, es decir, de la capacidad de inhibición de replicación de un virus hacia otro²⁶.

Las coinfecciones pueden alterar la epidemiología de otro virus²⁷. Por ejemplo, existe una competencia viral entre el VSR y la influenza, ya que cuando hay altas tasas de infecciones por el VSR los casos de influenza suelen descender y viceversa²⁸. Además, se han reportado tasas de coinfección entre los dos virus seis veces menos de lo esperado²⁹. Esto coincide con lo reportado en esta investigación, ya que solo se detectó un caso de coinfección con influenza durante los tres años estudiados.

En cambio, el virus con mayor prevalencia en la población, el rinovirus, destaca por su detección junto al VSR en múltiples estudios^{30, 31}. A pesar de que el rinovirus es una afección viral con brotes esporádicos en invierno, temporada donde

el VSR es predominante en el hemisferio sur y norte³², su coinfección con el VSR es alta, reportándose hasta en un 78 % del total de las coinfecciones³³. No obstante, se ha evidencia que pueden existir interferencias virales entre estos dos virus que pueden limitar su coinfección³⁴.

Con respecto a las coinfecciones con SARS-CoV-2, obtuvimos una prevalencia del 29 %. Esta incidencia es mayor a la reportada en un estudio publicado en el 2022, donde la incidencia fue del 18 %³⁵. A pesar de la incidencia presentada en la población, aún hace falta estudiar las implicaciones clínicas entre estos dos virus³⁶.

Uno de los virus presentados en las coinfecciones, que evidencia similitudes tanto en la estructura molecular como en la sintomatología es el metapneumovirus³⁷, del cual se ha reportado que cuando se presenta como coinfección junto al VSR incrementa el riesgo de desarrollar una infección del tracto respiratorio inferior en pacientes pediátricos³⁸. La misma situación ocurre con el rinovirus y la parainfluenza, pero no con la influenza A³⁹.

Circulación estacional del VSR

Tanto en el 2020 como en el 2021 la temporada con mayor incidencia de VSR fue octubre-diciembre, mientras que en el 2022 la temporada con mayor incidencia fue julio-septiembre. Estos datos coinciden con lo evidenciado en la bibliografía, debido a que el VSR tiende a presentarse en los países tropicales durante la temporada de lluvia y/o en épocas de invierno²⁴.

Limitaciones

Una limitación encontrada en este estudio es la carencia de detección de subtipos del VSR. Para estudios posteriores se recomienda la detección de los genotipos A y B del VSR para determinar si existe diferencias significativas entre su circulación estacional y su prevalencia, así como sus efectos clínico-epidemiológicos en la población pediátrica dominicana.

Conclusión

Queda demostrado que el virus sincitial respiratorio (VSR) es una afección estacional que predomina en las temporadas lluviosas y de invierno en la República

Dominicana. Además, es responsable del 23.77 % de las afecciones respiratorias encontradas en pacientes pediátricos, siendo los grupos etarios menores de 2 años los más afectados.

La pandemia más reciente de COVID-19 ha demostrado que las estrategias preventivas básicas (como una buena higiene de las manos y el uso de mascarillas) tienen una mayor relación coste-eficacia que las estrategias de prevención secundarias a la hora de disminuir la carga del VSR. En vista de ello, hacemos hincapié, además de las técnicas de vacunación, en la aplicación de medidas higiénicas preventivas no farmacéuticas incluso después de la pandemia de COVID-19 con el fin de restringir la propagación mundial del VSR. Es imprescindible continuar con la vigilancia de esta afección para tomar medidas necesarias que reduzcan su impacto en los pacientes pediátricos.

Declaración de conflictos de intereses

Los autores no tienen conflictos de intereses que revelar.

Financiación

Esta investigación no ha recibido ninguna subvención específica de ningún organismo de financiación del sector público, comercial o sin ánimo de lucro.

Bibliografía

- 1. Wong-Chew RM, García-León ML, Noyola DE, Perez Gonzalez LF, Gaitan Meza J, Vilaseñor-Sierra A, et al. Respiratory viruses detected in Mexican children younger than 5 years old with community-acquired pneumonia: a national multicenter study. Int J Infect Dis [Internet]. 2017;62:32–8. Available from: http://dx.doi.org/10.1016/j.ijid.2017.06.020
- Resch B. Burden of respiratory syncytial virus infection in young children. World J Clin Pediatr [Internet]. 2012;1(3):8. Available from: http://dx.doi. org/10.5409/wjcp.v1.i3.8
- 3. Stein RT, Bont LJ, Zar H, Polack FP, Park C, Claxton A, et al. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr Pulmonol [Internet]. 2017;52(4):556–69. Available from: http://dx.doi.org/10.1002/ppul.23570

- 4. Zhou Y, Tong L, Li M, Wang Y, Li L, Yang D, et al. Recurrent wheezing and asthma after respiratory syncytial virus bronchiolitis. Front Pediatr [Internet]. 2021;9. Available from: http://dx.doi.org/10.3389/fped.2021.649003
- 5. Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet [Internet]. 2017;390(10098):946–58. Available from: http://dx.doi.org/10.1016/s0140-6736(17)30938-8
- 6. González-Ortiz AM, Bernal-Silva S, Comas-García A, Vega-Morúa M, Garro-cho-Rangel ME, Noyola DE. Severe respiratory syncytial virus infection in hospitalized children. Arch Med Res [Internet]. 2019;50(6):377–83. Available from: http://dx.doi.org/10.1016/j.arcmed.2019.10.005
- 7. da Silva ER, Pitrez MCP, Arruda E, Mattiello R, Sarria EE, de Paula FE, et al. Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infect Dis [Internet]. 2013;13(1). Available from: http://dx.doi.org/10.1186/1471-2334-13-41
- 8. Obando-Pacheco P, Justicia-Grande AJ, Rivero-Calle I, Rodríguez-Tenreiro C, Sly P, Ramilo O, et al. Respiratory syncytial virus seasonality: A global overview. J Infect Dis [Internet]. 2018;217(9):1356–64. Available from: http://dx.doi.org/10.1093/infdis/jiy056
- 9. Ruckwardt TJ, Morabito KM, Graham BS. Immunological lessons from respiratory syncytial virus vaccine development. Immunity [Internet]. 2019;51(3):429–42. Available from: http://dx.doi.org/10.1016/j.immuni.2019.08.007
- Bergeron HC, Tripp RA. Immunopathology of RSV: An updated review. Viruses [Internet]. 2021;13(12):2478. Available from: http://dx.doi.org/10.3390/ v13122478
- 11. Resch B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum Vaccin Immunother [Internet]. 2017;13(9):2138–49. Available from: http://dx.doi.org/10.1080/21645515.2017.1337614

- **12.** Piedimonte G, Perez MK. Respiratory syncytial virus infection and bronchiolitis. Pediatr Rev [Internet]. 2014;35(12):519–30. Available from: http://dx.doi.org/10.1542/pir.35-12-519
- 13. Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol [Internet]. 2002;76(11):5654–66. Available from: http://dx.doi.org/10.1128/jvi.76.11.5654–5666.2002
- **14.** Villenave R, Broadbent L, Douglas I, Lyons JD, Coyle PV, Teng MN, et al. Induction and antagonism of antiviral responses in respiratory syncytial virus-infected pediatric airway epithelium. J Virol [Internet]. 2015;89(24):12309–18. Available from: http://dx.doi.org/10.1128/jvi.02119-15
- **15.** Bergeron HC, Tripp RA. Immunopathology of RSV: An updated review. Viruses [Internet]. 2021;13(12):2478. Available from: http://dx.doi.org/10.3390/v13122478
- **16.** Resch B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum Vaccin Immunother [Internet]. 2017;13(9):2138–49. Available from: http://dx.doi.org/10.10 80/21645515.2017.1337614
- 17. Committee on Infectious Diseases and Bronchiolitis Guidelines Committee, Brady MT, Byington CL, Davies HD, Edwards KM, Jackson MA, et al. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics [Internet]. 2014;134(2):415–20. Available from: http://dx.doi.org/10.1542/peds.2014-1665
- **18.** Bardach A, Rey-Ares L, Cafferata ML, Cormick G, Romano M, Ruvinsky S, et al. Systematic review and meta-analysis of respiratory syncytial virus infection epidemiology in Latin America: RSV epidemiology in Latin America: a review. Rev Med Virol [Internet]. 2014;24(2):76–89. Available from: http://dx.doi.org/10.1002/rmv.1775
- **19.** Meissner HC. Viral bronchiolitis in children. N Engl J Med [Internet]. 2016; 374(1):62–72. Available from: http://dx.doi.org/10.1056/nejmra1413456

- 20. Gómez Alba V, Feris-Iglesias J, Florén A, Sánchez J, Fernández J. Características clínico-epidemiológicas de la infección respiratoria aguda (ira) por Virus Sincitial Respiratorio (VSR) en niños menores de dos años: admitidos en el hospital Infantil Dr. Robert Reid Cabral (HIRRC), enero-diciembre 2006. Cienc Salud [Internet]. 2018;2(2):41–7. Available from: http://dx.doi.org/10.22206/cysa.2018.v2i2.pp41-47
- 21. Yassine HM, Sohail MU, Younes N, Nasrallah GK. Systematic review of the respiratory syncytial virus (RSV) prevalence, genotype distribution, and seasonality in children from the Middle East and North Africa (MENA) region. Microorganisms [Internet]. 2020;8(5):713. Available from: http://dx.doi.org/10.3390/microorganisms8050713
- 22. Xing Y, Proesmans M. New therapies for acute RSV infections: where are we? Eur J Pediatr [Internet]. 2019;178(2):131–8. Available from: http://dx.doi.org/10.1007/s00431-018-03310-7 22
- 23. Colomé-Hidalgo M, Gil Fernández M, Silfa C. Brote de infección respiratoria aguda grave, Santo Domingo Norte, República Dominicana, agosto 2016. Cienc Salud [Internet]. 2019;3(1):15–21. Available from: http://dx.doi.org/10.22206/cysa.2019.v3i1.pp15-21
- **24.** Abo Y-N, Clifford V, Lee L-Y, Costa A-M, Crawford N, Wurzel D, et al. COVID-19 public health measures and respiratory viruses in children in Melbourne. J Paediatr Child Health [Internet]. 2021;57(12):1886–92. Available from: http://dx.doi.org/10.1111/jpc.15601 21
- **25.** Rehder KJ, Wilson EA, Zimmerman KO, Cunningham CK, Turner DA. Detection of multiple respiratory viruses associated with mortality and severity of illness in children*. Pediatric Critical Care Medicine. 2015;16(7).
- 26. Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clinical microbiology reviews. 2018 Jul 5;31(4):e00111-17
- 27. Meskill SD, O'Bryant SC. Respiratory virus co-infection in acute respiratory infections in children. Current Infectious Disease Reports. 2020 Jan;22(1):1-8

- **28.** Wang Y, Zhang Y, Kong W-H, Zhu H-H, Lin X-M, Yu B, et al. Epidemiological characteristics of influenza virus and respiratory syncytial virus among children in Wuhan area from 2008 to 2012. Zhonghua Yu Fang Yi Xue Za Zhi. 2013;47(5):415–9.
- **29.** Meskill SD, Revell PA, Chandramohan L, Cruz AT. Prevalence of co-infection between respiratory syncytial virus and influenza in children. The American Journal of Emergency Medicine. 2017;35(3):495–8.
- **30.** Costa LF, Queiróz DAO, Lopes da Silveira H, Bernardino Neto M, de Paula NT, Oliveira TFMS, et al. Human rhinovirus and disease severity in children. Pediatrics [Internet]. 2014;133(2):e312-21. Available from: http://dx.doi.org/10.1542/peds.2013-2216
- 31. Mansbach JM, Piedra PA, Teach SJ, Sullivan AF, Forgey T, Clark S, et al. Prospective multicenter study of viral etiology and hospital length of stay in children with severe bronchiolitis. Arch Pediatr Adolesc Med [Internet]. 2012;166(8):700–6. Available from: http://dx.doi.org/10.1001/archpediatrics.2011.1669
- 32. Kabego L, Balol'Ebwami S, Kasengi JB, Miyanga S, Bahati YL, Kambale R, et al. Human respiratory syncytial virus: prevalence, viral co-infections and risk factors for lower respiratory tract infections in children under 5 years of age at a general hospital in the Democratic Republic of Congo. J Med Microbiol [Internet]. 2018;67(4):514–22. Available from: http://dx.doi.org/10.1099/jmm.0.000713
- 33. Chan PWK, Chew FT, Tan TN, Chua KB, Hooi PS. Seasonal variation in respiratory syncytial virus chest infection in the tropics. Pediatr Pulmonol [Internet]. 2002;34(1):47–51. Available from: http://dx.doi.org/10.1002/ppul.10095
- 34. Comte A, Bour J-B, Darniot M, Pitoiset C, Aho-Glélé LS, Manoha C. Epidemiological characteristics and clinical outcomes of human rhinovirus infections in a hospitalized population. Severity is independently linked to RSV coinfection and comorbidities. J Clin Virol [Internet]. 2020;125(104290):104290. Available from: http://dx.doi.org/10.1016/j.jcv.2020.104290

- **35.** Swets MC, Russell CD, Harrison EM, Docherty AB, Lone N, Girvan M, et al. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet [Internet]. 2022;399(10334):1463–4. Available from: http://dx.doi.org/10.1016/S0140-6736(22)00383-X
- **36.** Alvares PA. SARS-CoV-2 and respiratory syncytial virus coinfection in hospitalized pediatric patients. Pediatr Infect Dis J [Internet]. 2021;40(4):e164–6. Available from: http://dx.doi.org/10.1097/INF.00000000000003057
- **37.** Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate immune components that regulate the pathogenesis and resolution of hRSV and hMPV infections. Viruses [Internet]. 2020;12(6):637. Available from: http://dx.doi.org/10.3390/v12060637
- **38.** Li Y, Pillai P, Miyake F, Nair H. Theroleofviralco-infectionsintheseverityofacuterespiratoryinfectionsamongchildren infected with respiratory syncytial virus (RSV): A systematic review and meta-analysis. J Glob Health. 2020;10.
- **39.** Yoshida L-M, Suzuki M, Nguyen HA, Le MN, Dinh Vu T, Yoshino H, et al. Respiratory syncytial virus: co-infection and paediatric lower respiratory tract infections. Eur Respir J [Internet]. 2013;42(2):461–9. Available from: http://dx.doi.org/10.1183/09031936.00101812